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Properties of the flow generated by a continuous source of dense fluid on a slope in a
rotating system are investigated with a variety of laboratory experiments. The dense
fluid may initially flow down the slope but it turns (under the influence of rotation) to
flow along the slope, and initial geostrophic adjustment gives it an anticyclonic velocity
profile. Some of the dense fluid drains downslope in a viscous Ekman layer, which may
become unstable to growing waves. Provided that the viscous draining is not too
strong, cyclonic vortices form periodically in the upper layer and the dense flow breaks
up into a series of domes. Three processes may contribute to the formation of these
eddies. First, initial downslope flow of the dense current may stretch columns of
ambient fluid by the ‘Taylor column’ process (which we term ‘capture ’). Secondly, the
initial geostrophic adjustment implies lower-layer collapse which may stretch the fluid
column, and thirdly, viscous drainage will progressively stretch and spin up a captured
water column. Overall this last process may be the most significant, but viscous
drainage has contradictory effects, in that it progressively removes dense lower-layer
fluid which terminates the process when the layer thickness approaches that of the
Ekman layer. The eddies produced propagate along the slope owing to the combined
effects of buoyancy–Coriolis balance and ‘beta-gyres ’. This removes fluid from the
vicinity of the source and causes the cycle to repeat. The vorticity of the upper-layer
cyclones increases linearly with Γ¯Lα}D (where L is the Rossby deformation radius,
α the bottom slope and D the total depth), reaching approximately 2f in the
experiments presented here. The frequency at which the eddy}dome structures are
produced also increases with Γ, while the speed at which the structures propagate along
the slope is reduced by viscous effects. The flow of dense fluid on slopes is a very
important part of the global ocean circulation system and the implications of the
laboratory experiments for oceanographic flows are discussed.

1. Introduction

The flow of dense water from marginal seas or through sills down into the deep
ocean is an important part of the global thermohaline circulation. Examples include
the flow of dense water formed in the polar regions down into the surrounding oceans
(see Baines & Condie 1997 for a review of the Antarctic situation) and also smaller-
scale flows such as Mediterranean water flowing into the Atlantic and the flow through
the Bass Strait into the Tasman Sea. These complex flows are poorly resolved in
present ocean circulation and climate models, yet they are crucial to the long-term
behaviour of the global ocean system (see, for example, Harvey 1996).

There have been a number of models of dense plumes on slopes using averaged or
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integral properties to describe the plume. For example, Smith (1975), Killworth (1977)
and Price & Baringer (1994) use ‘streamtube’ models to investigate the flow of a dense
current on a slope in a rotating system. In such models the plume is assumed to follow
a path described in terms of the plume centreline. At each position along the path the
plume properties are given in terms of steady time-averaged velocities and densities,
with the cross-sectional shape of the plume given in terms of some width and height
scales. The engulfing of ambient fluid into the plume is generally parametrized using
an entrainment constant, relating the velocity of ambient fluid into the plume to the
local velocity scale within the plume (more sophisticated models include the stabilizing
effect of buoyancy, e.g. Price & Baringer). Drag and buoyancy forces are also treated
in an integral or averaged fashion. In these models the plume flow is basically
alongslope, but with the plume taken slightly downslope by the effects of viscosity. The
volume flux in the plume grows because of entrainment, which also results in a steady
reduction in the density difference between the plume and the ambient fluid as one
moves along the plume. Where ambient stratification is included this results in the
plume eventually reaching a neutral level, where it has the same density as the ambient
seawater.

Similar models have been developed for non-rotating two-dimensional currents on
slopes (Jenkins 1991; Lane-Serff 1993, 1995; Bombosch & Jenkins 1995). Some of these
models include extra effects such as the melting and freezing of ice to simulate flows
under ice shelves. Baines (1997) has performed laboratory experiments of non-rotating
downslope flows in a stratified fluid. These experiments show that a simple entrainment
model is not appropriate where the ambient fluid is stratified. In addition to
entrainment of ambient fluid into the current, detrainment of fluid from the plume is
observed, and this detrained fluid then mixes with the ambient fluid.

The flow of dense fluid released on a horizontal surface (or light fluid on an upper
surface) in a rotating system has been reviewed by Griffiths (1986). When the release
is against a wall the dense fluid flows as a gravity current along the wall with a width
that scales on the Rossby deformation radius (see §3). A number of workers have used
laboratory experiments to investigate dense flows on a slope in a rotating system.
Mory, Stern & Griffiths (1987) produced coherent eddies by releasing a volume of
dense fluid onto a sloping bottom. A strong cyclonic eddy was formed in the water
column above the dense fluid and the entire system moved ‘north-westwards’ (i.e.
along- and upslope), though some of the dense fluid drained downslope in a viscous
Ekman layer. Whitehead et al. (1990) conducted a variety of experiments investigating
flows generated by continuous sources. These flows were observed to produce a train
of eddies under certain conditions. The stability of bottom currents on a slope with a
deep upper layer has been described by Griffiths, Killworth & Stern (1982), and with
an active upper layer by Swaters & Flierl (1991) Swaters (1991, 1993a, b) and Karsten
& Swaters (1996).

The first quantitative experiments on downslope flows in rotating systems were by
Smith (1977), who released fluid continuously from a localized source on an
axisymmetric slope. For the parameter range of the experiments, eddies were produced
in virtually all circumstances. Smith also identified the viscous drainage layer, gave a
theoretical framework for the extinguishment of the inviscid current, and showed that
this was consistent with his experiments. He compared the observed frequency of eddy
production with predictions from two-layer baroclinic instability theory, and found
that the frequency showed a similar trend with current speed, but otherwise the
agreement was generally poor. Nagata et al. (1993), Condie (1995) and Zatsepin,
Kostyanoi & Semenov (1996) conducted axisymmetric experiments with dense fluid
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flowing radially out of a source at the top of an axisymmetric hill (e.g. a truncated
cone). Viscous effects were very important in most of these experiments, with a
significant Ekman layer. An important result from these studies is that the downslope
component of the flow occurs in a thin viscous boundary layer with a maximum
thickness that scales on the Ekman layer thickness and a velocity that is given by a
balance between Coriolis and gravitational accelerations (this is discussed further in
§3). Whitehead et al. (1990), Nagata et al. and Zatsepin et al. all note the occasional
presence of waves on this viscous downslope flow. The rest of the flow is confined to
an essentially inviscid alongslope geostrophic current. In addition to an axisymmetric
source, Nagata et al. examine flow from a horizontal line source, and Condie presents
a few results from experiments where the source is a channel releasing fluid at one point
on the hill.

Here we present the results of a comprehensive set of experiments investigating the
flow of dense water from a steady localized source. We use a number of slope angles
and a wide range of rotation rates, density differences and ambient fluid depths, but the
ambient fluid is always uniform (unstratified).

The experiments are described in detail in the next section. In §3 we examine the
appropriate scalings for this type of flow. The results of the experiments are presented
in §4 and in §5 we discuss eddy formation and applications to oceanographic flows. In
the final section we summarize the work and outline future studies.

2. Experiments

The apparatus is shown in figures 1 and 2. Two tanks were used: a glass tank with
base 75 cm¬75 cm and height 70 cm, and a Perspex tank with a circular base of
diameter 95 cm and height 50 cm. Slopes were placed in the tanks, with a horizontal
‘shelf ’ at the top of the slope. The slopes did not extend to the edges of the tanks, so
that dense fluid could cascade off the slopes and not interfere with the later flow.
Dense fluid was introduced over a weir (7–10 cm wide and 1–2 cm high) at the top
of the slope. Except for the section occupied by the weir, the shelf was separated
from the slope by a vertical barrier. Two simple plane slopes (angles 5.7° and
15.7° from the horizontal) were used in the square tank and a truncated cone
(slope 13.8° from the horizontal) was used in the circular tank. The cone had a small
sector removed, to allow fluid that had flowed all the way around the slope to cascade
down below the slope, and a radial barrier, to reduce secondary motions induced by
the cascading dense fluid.

The tanks were filled with fresh water from a mains supply. Denser fluid was made
by adding common salt, with densities measured using an Anton Paar densitometer.
The dense fluid was marked by adding vegetable dye and placed in a bucket mounted
on the rotating table superstructure. For most of the experiments the dense fluid was
introduced via a flowmeter into a channel on the shelf at the top of the slope. The
relative density difference between the source fluid and the ambient fluid was in the
range 0.01 to 0.15 and flow rates were from 20 to 35 cm$ s−". An L-shaped channel was
used in the square tank, a straight channel in the circular tank. The channels contained
some mesh to help smooth the flow. The dense fluid then flowed over the weir, giving
a steady source flow onto the slope (see figure 2).

In order to test the sensitivity of the results to the initial conditions, a number of
experiments in the circular tank were conducted with a different type of source. For
these experiments the dense fluid was injected horizontally along the slope through a
nozzle (of approximately inverted parabolic shape, with a central height of 1.5 cm and
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F 1. Sketch showing the arrangement of the apparatus on the rotating table.

a width of 10 cm) mounted on the upper part of the slope. This source is also more
convenient for theoretical discussion (see §5).

The Earth’s rotation was simulated by placing the tanks on a belt-driven rotating
table which has a 1.1 m diameter platter, controlled by a tacho-feedback system. The
rotation rate of the table was calculated by measuring the time for a number of
rotations (typically ten) using a stopwatch. The range of rotation rates used was from
20 down to 3 s per revolution ( f¯ 0.63 to 4.2 s−"). The sense of the rotation was always
clockwise, when viewed from above (‘southern-hemisphere’).

The centrifugal acceleration caused by the rotation results in curvature of the free
surface so that it (and other isopotential surfaces) becomes parabolic in shape. This has
the effect of adding a parabolic hill to the bottom topography. (This effective parabolic
hill is the only topography present in the experiments of Condie 1995.) This merely
increases the slope in the circular tank (with the slope increasing with increasing radius)
but it makes the effective topography in the square tank more complicated (a
combination of plane slope and parabolic hill). The magnitude of the effective extra
slope (which varies with position) has generally been kept significantly smaller than the
real slope in our experiments (typically 10% or less), but there are a couple of rapidly
rotating experiments where this effect approaches 40% at positions furthest from the
centre of rotation. The weir was modified so that its crest was approximately level with
respect to the local isopotential surface.

The experiments were filmed using a U-matic video system with a camera placed on
the rotating table, viewing the apparatus from above to give a plan view. A grid was
marked on the slope to facilitate taking measurements from the video recordings.

The procedure for each experiment was as follows. The tank was filled to the
required depth with fresh water and the bucket filled with salt solution and dye (with
samples taken to check the densities). The table was then rotated at the desired rate and
the water in the tank allowed to spin up to solid-body rotation (taking typically
20 min). The flow of dense fluid was started and the flow rate noted. The flow rate
usually decreased slowly (by up to 10%) during the course of the experiment. The
duration of the dense flow was typically 3 to 5 min.

Here we present the results from a total of 88 experiments, 40 in the square tank (28
with the 15.7° slope and 12 with the 5.7° slope) and 48 in the circular tank (of which
22 use the source mounted on the slope). The parameters for the experiments are given
in table 1, which is not reproduced here, but is available from the authors or the JFM
Editorial Office.
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F 2. Schematic sections and plans of the two tanks used: (a) the square tank, (b) the circular
tank, and (c) the source used for injecting fluid along the slope in some experiments. The position of
this alternative source is indicated in (b).
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3. Scalings

An experiment with a large depth of ambient fluid above the shelf (more than 30 cm)
is shown in figure 3. The dense fluid flows over the weir in a layer that is deeper on the
left (looking downstream). The flow is initially downslope but turns left (recall that
southern hemisphere rotation was used) and much of the flow moves alongslope in a
current confined to the upper part of the slope. However, some of the fluid flows at an
angle downslope in a thin layer. Under some conditions this layer develops waves as
it moves down the slope.

For most of the experiments the width of the weir was wider than the Rossby radius
so that the flow was not restricted there. Where the width of the weir restricts the flow
we expect the flow to undergo a more complicated adjustment, but in any case the flow
has adjusted and set its own width, depth and velocity scales rather than having these
preset at the source. This self-adjustment is how many naturally occurring dense flows
behave and we base our scalings on this process. First, we consider the flow of an
inviscid dense current on a semi-infinite horizontal surface bounded by a vertical wall,
with the current flowing along the wall and having an approximately triangular cross-
section (see, for example, Griffiths & Hopfinger 1983). If the height of the current is
given by d, then the width of the current will scale with the Rossby deformation radius

L¯ (g«d )"/#} f, (1)

where g«¯ (∆ρ}ρ) g is the reduced gravity and f is the Coriolis parameter. The velocity
in the current will be given from a standard gravity current model as

uC (g«d )"/#. (2)

The volume flux of the current will then be given by

QC "

#
dLu. (3)

The parameters that are set externally are g«, f and Q, with the flow adjusting in
response. This gives our estimates of the appropriate height, width and velocity scales
as

d¯ (2Qf}g«)"/#, (4)

L¯ (2Qg«)"/% f−$/%, (5)
and

u¯ (2Qfg«)"/%. (6)

These scales are for an inviscid flow on a horizontal surface. For flow on a slope it is
useful to introduce another velocity scale. If an isolated volume of dense fluid is moving
along the slope (with uphill being to the left in the southern hemisphere) the Coriolis
acceleration will be upslope while the gravitational acceleration will be downslope. The
alongslope speed for which these accelerations balance is given by

c
N

¯ g«α} f, (7)

where α is the (small) angle of the slope from the horizontal. This speed is also known
as the ‘Nof speed’ (e.g. Swaters & Flierl 1991). Nagata et al. (1993) showed (for an
axisymmetric flow) that the maximum thickness of the viscous draining layer scaled on
the Ekman layer thickness,

dν ¯ (2ν} f )"/#, (8)
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F 3. Digitized video image of a plan view of an experiment in the square tank, 15.7° slope, with
a deep layer of ambient fluid, D¯ 33.5 cm, above the dark, dense current (run 21: rotation rate¯
6 s}rev, Q¯ 26 cm$ s−", g«¯ 51.0 cm s−#). The source of the dense fluid is just below the bottom
right-hand corner of the image. The dense current mostly flows from right to left along the top of the
slope (the bottom edge of the image) but with some fluid draining at an angle down the slope. While
the alongslope flow is smooth, the downslope flow develops a series of waves with crests
approximately perpendicular to the local flow direction. The square grid is spaced at 10 cm and two
strings (see figure 6) are visible towards the left of the image. The triangular dark region on the right-
hand edge of this and the next figure is the sidewall of the tank.

where ν is the kinematic viscosity (taken here to be 0.01 cm# s−"). They also showed that
the velocity in this layer scaled on c

N
. Thus we can introduce an alongslope lengthscale :

the distance over which the initial flux is drained,

Y¯ (Qf $/#)}(g«α (2ν)"/#). (9)

(A very similar drainage scale distance was identified by Smith 1977.) At distances
short compared with Y we expect viscous effects to be unimportant, with viscous effects
becoming significant at distances of order Y and larger (though even a small amount
of drainage may have a significant affect on the vorticity by stretching fluid columns).
The relative importance of the viscous draining can be quantified in terms of the ratio
of the alongslope draining distance to the width of the flow,

Y}L¯ 2−$/%Q$/% f */% ν−"/# g«−&/%α−". (10)

The parameters for the experiment shown in figure 4 are similar to those for the
experiment in figure 3, except that the depth of the ambient fluid above the shelf is
smaller (approximately 9 cm). In this case the alongslope flow breaks up, with strong
cyclonic eddies observed in the ambient fluid and domes of dense fluid moving along
the slope. The wall at the top of the slope may restrict any upslope movement of the
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F 4. Similar to figure 3 but with a shallow depth of ambient fluid (D¯ 8.7 cm) above the dense
current (run 23: Q¯ 28 cm$ s−", g«¯ 49.0 cm s−#). The dense flow has now broken up into a series of
isolated domes with strong cyclonic vortices in the overlying fluid. The strength of the downslope
flow, and the presence of waves on this flow, is affected by the eddies. The waves near the bottom of
the slope (top of the image) are associated with the central eddy.

domes. If we assume that the domes of dense fluid under the eddies are cylinders with
a height and radius given by equations (4) and (5) then the time for the flux Q to fill
each dome is 2π}f, which is the time for one half-revolution of the table.

Eddy formation occurs when the depth of the ambient fluid is small, suggesting that
it is related to vortex stretching in the fluid above the current. The current initially flows
downslope a distance that scales on the Rossby radius before it turns and flows
alongslope (for the weir flows). If we assume that the current takes the ambient fluid
above it out into deeper water then we see that the ambient fluid is stretched by an
amount Lα. This, compared with the initial height of the ambient fluid columns, give
the relative stretching as

Γ¯Lα}D, (11)

where D is the depth of the ambient fluid above the incoming current.
A number of other parameters have been introduced in investigations of dense flows

on slopes. The basic scaling for the height and width of the current gives a
‘geostrophic ’ slope,

S¯ d}L¯ (2Qf &}g«$ )"/%, (12)

which can be used to scale the topographic slope, i.e. s¯α}S. This is also equal to the
ratio between the speeds u and c

N
, and so in turn is equal to the ratio between the

inertial radius for a fluid particle released on a slope (R
i
¯ c

N
}f ) and the Rossby

radius, L, that we introduced earlier,

s¯α}S¯ c
N
}u¯R

i
}L. (13)



Eddy formation by dense flows on slopes in a rotating fluid 237

From the equations for the flow of a dense current on a slope in a stationary
homogeneous environment (e.g. Condie 1995) it can be shown that the current is bi-
directional if

f #d
!
}g«α#" 1, (14)

and unidirectional otherwise, where d
!
is defined by the potential vorticity of the dense

fluid, f}d
!
. If we identify d

!
with d, (14) is equivalent to s! 1 where s is defined by (13).

A current on a ‘steep’ topographic slope can have a cross-sectional shape whose slope
(i.e. d

x
) is everywhere negative (supporting unidirectional flow), while on a ‘shallow’

slope the current slope must have both signs.
In his investigation of the stability of alongslope currents, Swaters (1991) introduces

an interaction parameter, µ. This parameter incorporates a Rossby radius based on the
depth of the ambient fluid

R¯ (g«D)"/#}f, (15)

which may be compared with equation (1). With the current depth given by our
standard scaling, the Swaters interaction parameter is

µ¯ d}(Rα)¯ (1}s) (d}D)"/#. (16)

We use the scales introduced in this section in our analysis of the results of the
experiments.

4. Results

We will first describe the results for those experiments where the dense fluid flowed
over a weir at the top of the slope. The flows where the dense fluid was injected along
the slope are described towards the end of this section.

4.1. Basic features

On leaving the source the flow turns under the influence of rotation. The flow is then
observed to have two main components : an inviscid alongslope flow and a viscous,
draining, downslope flow. Under certain conditions the alongslope flow is not
continuous but is made up of a series of dense domes, with cyclonic eddies formed in
the ambient fluid above the domes. The domes are formed very close to the source and
then propagate along the slope with, in some cases, some small upslope velocity
(though upslope flow is impeded by the vertical wall at the top of the slope). The
downslope excursion of the flow (before turning to flow along the slope) was estimated
for a few images from some of the experiments either from the position of the centre
of eddies (when these were formed) or from the apparent centreline of the alongslope
flow. For those flows which broke up, the size of the dome}eddy structures was also
estimated. These results are plotted in figure 5. There is a good deal of scatter, in part
because of the subjective nature of the measurements, and the results should be treated
with caution. We conclude that the lengths scale on L, but a wider range of Rossby
radii would be needed to test this convincingly (requiring a larger tank). Assuming this
linear scaling, the downslope excursion is found to be (2.3³0.1) L and the eddy radius
(1.25³0.05) L.

The depth of the dense fluid was found in a few places in some experiments by using
a piece of string with one end taped to the slope near to its bottom edge and the other
end attached a known distance up the wall at the top of the slope. The depth at the
point where the string passes into the current can then be calculated (see figure 6). The
depth of the dense layer can also be estimated from the video images (the image is
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F 5. (a) Downslope excursion and (b) eddy radius as functions of the Rossby radius, L. The
best-fit lines through the origin are also plotted, (a) (2.3³0.1) L and (b) (1.25³0.05) L. +, Square
tank, 15.7° slope; *, square tank, 5.7° slope; E, circular tank, 13.8° slope.
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F 6. A sketch showing how lengths of string, attached between a point near the bottom of
the slope and the wall at the top of the slope, were used to estimate the thickness of the dense
flow.

darker where the dense flow is deeper) and the relationship between layer thickness and
light intensity can be calibrated at a few points using the string method. Some video
images were digitized and processed using the DigImage system, and an example is
shown in figure 7. As figure 7 shows, the dense domes are not perfectly regular in shape.
The presence of the dome}eddy structures also has an effect on the viscous downslope
flow, modulating its strength (with the layer thickest downslope of the eddies), and thus
the waves that develop on this flow are most prominent there.

In addition to dyeing the dense fluid, in some experiments the surface was sprinkled
with small floating particles or powder to identify motions in the ambient fluid. The
centres of the eddies in the ambient fluid did not always appear to lie directly over the
centres of the domes but generally seemed to lag behind the dome. We did not make
any direct measurements of the flow within the dense domes, but inferred that it was
anticyclonic with respect to the upper part of the eddy. The formation of strong eddies
in the water column above the current is a very striking feature of the flow. In the rest
of this section we examine the conditions under which the eddies form and the
properties of the eddies. The flows were analysed by studying the video recordings of
the experiments. The positions of the domes or eddies were estimated by eye, with times
being available from a timer display recorded on the video (with a resolution of 0.01 s).
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F 7. A processed image from an experiment (run 26: rotation rate¯ 6 s}rev, Q¯ 27 cm$ s−",
D¯ 8.5 cm) with the thickness of the flow estimated from the image intensity. The contours are at
intervals of approximately 1.1 mm. In this experiment the downslope flow is strongly modulated by
the instabilities, with very little flow in between them. Downslope of the right-hand dome}eddy there
is a suggestion of two or three short wave crests in the draining flow. However, the draining flow
downslope of the left-hand eddy is concentrated in a single feature that is nearly as thick as the dome.

4.2. Eddy speeds

The speed of propagation of each eddy along the slope was calculated by using a linear
fit to a plot of eddy position against time. The end regions, influenced by the source
and the slope edge, were ignored in this fit so that speeds were estimated for a central
position along the slope some nominal distance from the source (at y¯ 30 cm from the
source for the square tank, 40 cm for the circular tank). The determination of the
position of the eddies is somewhat subjective, and there is considerable variation in the
speeds of different eddies from the same experiment, so that the typical error bound on
our speed estimates is ³15%.

The ratio Y}L gives an indication of the importance of viscous effects. As can be seen
in figure 8, significant viscous draining results in slower eddies, and sufficient draining
prevents the formation of eddies altogether (presumably because all of the dense fluid
immediately drains downslope). The best-fit power law curve (to the weir experiments),
excluding large values of Y}L (greater than 70), gives

c}c
N

¯ (0.10³0.02) (Y}L)!.'#³
!.!'. (17a)

As Y}L increases, the speed of the eddies (compared with c
N

) increases, apparently
without limit. Large values of Y}L generally correspond to small values of s, so that
the slope may not be important for these flows. The eddies in these cases are more likely
to be associated with the instabilities observed in rotating gravity currents on a flat
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source; other symbols as figure 5.

surface. Indeed, while the eddy speed is not limited by c
N
, the eddy speeds are always

less than 0.5u (where u is the scale for gravity current speeds from equation (6)). While
the velocity scale u is clearly important, we could find no significant relations between
the propagation speed scaled with u (i.e. c}u) and any other parameter.

4.3. Vortex stretching

Figure 8 shows that eddies are sometimes absent even when we would not expect
viscous draining to be significant. In all these cases the stretching parameter, Γ, was
small. We did not find a relation between the speed of the eddies and Γ, but there is
a clear relation between the frequency of the eddies and the amount of vortex
stretching (figure 9). The effect of the eddies on the viscous flow (modulating the waves)
was used in determining the eddy frequency, in addition to the direct measurements of
the eddies. The production of eddies is more regular than their speed, and the error
in the frequency measurements we estimate at ³5% (for most cases). The largest
uncertainties occurred for flows where few or no clear eddies could be seen and a
frequency could only be estimated from a regular modulation of the viscous flow.

From figure 9 we see that the time interval, T
int

, between one eddy and the next
reduces as Γ increases. The best-fit curve (to the weir flow experiments) of the form
reciprocal with offset is

T
int

}T¯ (0.19³0.02)}Γ­(2.4³0.2), (17b)

where T is the rotation period. Thus the limiting frequency, as stretching increases, is
approximately one eddy every two and a half revolutions. Where Γ is very small, no
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F 9. The interval between one eddy and the next as a function of the stretching parameter.
Where no interval could be calculated, it is plotted as 0. A curve of the form reciprocal with offset
is fitted to the (non-zero) data, giving (0.19³0.02)}Γ­(2.4³0.2). Data from Smith (1977) are also
plotted (¬). Other symbols as figure 8.

clear frequency could be measured in these experiments. However, results from the
series 2 experiments of Smith (1977) are compatible with the present experiments,
though the source conditions are somewhat different (flow through a tube rather than
over a weir) and the source fluid is significantly more viscous than the ambient fluid.
The Smith experiments lie in the small-Γ range and are plotted in figure 9, showing an
extension of the above relationship to smaller Γ.

4.4. Eddy formation

In figure 10 the parameter ranges covered by the weir experiments (in terms of Y}L and
Γ ) are displayed. The plot is divided into three regions: (i) a region in which all the
experiments produced a number of clear eddies whose speed and frequency could be
determined, (ii) a region which produced no eddies or even any measurable regular
oscillation in the flow, and finally (iii) an overlap region. The overlap region includes
experiments that produced clear eddies, experiments that produced no eddies and
experiments for which either the speed or the frequency of eddies could not be
determined. We see that provided there is sufficient stretching (Γ" 0.07, in our
experiments) and provided there is not too much viscous draining (Y}L" 3.5) then a
regular series of cyclonic eddies is observed in the ambient fluid.
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F 10. The parameter space covered by the experiments showing the region where eddy
formation occurred. Symbols as figure 5.

4.5. Eddy strength

The flow in the ambient fluid was estimated by observing particles or powder scattered
on the surface of the water. Particles were observed to enter and leave the eddy system,
so that it is apparent that the eddy does not consist of a translating column of fluid.
The eddy structure moves through the ambient fluid, though fluid nearer the centre of
the eddy appears to be trapped in the eddy for a longer period than fluid on the
boundary.

It is useful to consider the theoretical flow generated by an isolated parabolic dome
of dense fluid moving along a slope derived by Swaters & Flierl (1991). This model
assumes geostrophic flow in the dome and quasi-geostrophic flow in the ambient fluid.
The predicted speed of the dome along the slope is c

N
. The predicted motion in the

ambient fluid is everywhere cyclonic, with a core above the centre of the dense dome
that is nearly in solid-body rotation. From our experiments we have estimated the
relative rotation of the core of the eddies around the translating eddy centres by
observing the motion of individual particles, particle pairs and clouds of powder as
they move around the eddies (assuming the core to be in solid-body rotation). The
results are presented in figure 11. There is a good deal of scatter in these results, as is
to be expected from the rather crude methods used, but there is a clear increase in the
strength of the eddy with increasing Γ. The eddies appear to be remarkably strong,
with relative vortices of order f (approximately 2f for Γ¯ 0.5).

4.6. Injected source

Some of the flows with the injected source fluid also produced eddies that propagated
along the slope. Eddies again occurred when there was sufficient stretching and not too
much viscous draining, but the criteria were more restrictive (Γ" 0.09 and Y}L"
17.5). The eddies formed farther downstream of the source in this case than for the weir
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the stretching parameter. Symbols as figure 5.

flows and this perhaps explains why weaker viscous draining was necessary for the
eddies to be observed. When eddies did form, the speed of propagation and the
frequency of production followed the same relations as were found for the weir flows
(as shown on figures 8 and 9).

4.7. Alternati�e scalings

Finally, we may use our results to test possible mechanisms for eddy production. We
discuss two possible mechanisms here, and consider further explanations in the final
section.

One may hypothesize that eddies may be produced if the initial flow conditions are
such as to satisfy (14), and cause the flow to attempt to set up a bi-directional current
(the ‘bi-directional hypothesis ’). Since there is no source of fluid at the downstream
end, the fluid must turn anticyclonically at the nose of the current in order to attempt
to simulate bi-directional flow, and eddy formation may result from this nonlinear
process. This suggests that (14) should be tested as a criterion for the formation of
eddies. The time interval between the observed eddies is shown plotted as a function
of s in figure 12(a). No discernible pattern is observed, and this suggests that s is not
an important parameter for the formation of the eddies observed here. Hence the ‘bi-
directional hypothesis ’ is discarded.

Second, Swaters (1991) has carried out a linear stability analysis of steady dense
currents on a slope in a stationary homogeneous environment. His governing
equations are quasi-geostrophic in the upper layer, but more general in the lower layer
where they take into account motion of the boundaries of the dense fluid. The stability
properties of this system are governed by the interaction parameter µ defined by
equation (15). The analysis produces growing baroclinic disturbances concentrated on
the deep side of the current, with the familiar phase differences between the upper and
lower layers. Both the growth rate and wavenumber of these disturbances increase with
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(b) Swater’s interaction parameter, µ. Symbols as figure 5.

µ, with the phase speed remaining approximately constant. In the present experiments
the initial steady current is generally not established, and hence it cannot support
eddies produced by this instability process. Nonetheless the relevance of this baroclinic
mechanism can be tested by examining the sensitivity of the properties of the observed
eddies to µ. Figure 12(b) shows the time interval between eddies plotted as a function
of µ. Again, there is no discernible relationship, and hence there is no evidence that
baroclinic instability is important for the formation of these eddies.

In summary, we conclude that s and µ are not relevant scaling parameters for these
flow phenomena.

5. Discussion

5.1. Model for eddy formation

The quantitative observations described above, together with close scrutiny of the
phenomena on the video tapes, suggest the following scenario for eddy formation, in
which Ekman drainage plays an important part but baroclinic instability does not. We
address specifically the case where the fluid is ejected horizontally along the slope from
the source, rather than the flow over the sill, because of its greater simplicity and its
amenability to analytical treatment. The observations indicate that the same process
for eddy formation applies in both cases. We first give a short overview of this scenario,
and then discuss its various stages in more detail.

In brief, the inflowing lower layer suffers a reduction in thickness from two
processes : geostrophic adjustment, which occurs on the rotation time scale and causes
anticyclonic vorticity in the layer, and Ekman drainage, which occurs on a longer time
scale, and does not. Both processes decrease the thickness of the lower layer, and if the
fluid in the layer above is relatively static or ‘captured’ during this reduction, the
relative vorticity there will become cyclonic by conservation of potential vorticity. If
this process occurs strongly enough (or for a sufficiently long time) in a localized
region, a closed eddy forms in the upper layer, which is communicated barotropically
to the lower layer by the pressure field. This causes the net Ekman drainage flux to
decrease, and the decreased central pressure causes a small convergence in the lower
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layer. The eddy produced then propagates along the slope as a distinct entity, removing
the fluid from the generation region and causing the process to begin again. We first
describe this sequence of dynamical processes that produces these eddies, and then
compare the resulting predictions with the observations.

The observed eddy formation process may be broken down into five stages or
processes, some of which operate simultaneously: geostrophic adjustment of the initial
flow, Ekman drainage, capture (of the upper-layer fluid by the lower layer), collapse
of the lower layer and vortex stretching of the upper layer, and, finally, eddy formation
and propagation. We now describe the dynamics of each of these stages in turn.

(i) Geostrophic adjustment. The dense fluid is ejected through a nozzle of
approximate width B

!
, height d

!
and volume flux Q

!
, so that the dense flow initially has

this width and height. For these experiments we have d
!
¯ 1.5 cm, B

!
E 8 cm (the

shape tapers to zero at ³5 cm). This flow then adjusts to a state of geostrophic balance
within the time scale of a rotation period. This is an inviscid process, and is
approximately described by the following equations.

We take Cartesian coordinates with x and y horizontal and z vertical, as shown in
figure 13, with u, � and w the velocity components in the directions of x, y and z
increasing respectively. The flow of a two-layer fluid in hydrostatic and geostrophic
balance, with u¯ 0 everywhere and no alongslope variation, is given by

®f�
"
¯®g((d

"
­d

#
)
x
®α)­g«d

#x
, ®f�

#
¯®g((d

"
­d

#
)
x
®α), (18)

where the suffices 1 and 2 denote the lower and upper layers respectively, so d
"
and d

#
denote the local depth of these layers. The inflowing fluid is assumed to have uniform
potential vorticity which may be taken to be f}d

!
, and we assume this flows into a fluid

at rest. Conservation of potential vorticity in the lower layer then gives

f­�
"x

d
"

¯
f

d
!

,
f­�

#x

d
#

¯
f

D
!
®d

!

, (19)

where D
!

is the initial undisturbed total depth above the slope. Assuming that the
change in D

!
is small, d

"
satisfies

λ#d
"xx

®d
"
¯®d

!
, (20)

where λ#¯ g«d
!
(D®d

!
)}Df #. If we choose axes so that d

"
vanishes at x¯³B}2 (where

B is yet to be determined) then d
"

satisfies

d
"
(x)¯ d

!91®
cosh(x}λ)

cosh(B}2λ): . (21)
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F 14. Stages in the process of eddy formation. (a) Fluid emerges from the nozzle (on the left)
and progressively adjusts in the alongslope y-direction to geostrophic balance (grey arrows denote
alongslope velocity of the dense layer). The black arrows denote flow in the bottom Ekman layer,
which is uniform when the current is uniform, but increases in the downslope x-direction when
geostrophic balance is attained. The arrowtails denote suction of lower-layer fluid into the Ekman
layer, due to divergence in the Ekman flux, with size of the arrowtail indicating relative magnitude.
(b) Spin-up of upper-layer fluid captured over the lower layer, where the latter collapses due to
Ekman drainage shown in (a). (c) The resulting baroclinic eddy has overall cyclonic vorticity, and
propagates alongside as a form of finite-amplitude Rossby wave.
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Some collapse of the lower layer occurs during this process, as the maximum layer
thickness decreases from d

!
to d

!
}cosh(B}2λ). This results in an anticyclonic velocity

profile given by

�
"
¯

g«
r f r

(α®d
"x

)¯
g«
r f r 9α­

d
!

λ

sinh(x}λ)

cosh(B}2λ): . (22)

The total fluid flux in this current is

Q
!
¯αλ# r f r [B®2λ tanh(B}2λ)], (23)

so that B increases monotonically with Q
!
. B has comparable magnitude to λ in these

experiments, and these changes are shown schematically in figure 14(a). Equations
(18)–(21) then give �

#x
of order fd

!
}(D

!
®d

!
) so that geostrophic adjustment alone can

generate cyclonic vorticity in the upper layer. This can be substantial if the initial
depths of the two layers are comparable, and this probably accounts for the minimum
generation period of approximately two rotation periods in figure 9.

(ii) Ekman drainage. In the experiment, bottom friction acts on the dense current
immediately it exits from the nozzle, and drainage in the Ekman layer occurs
coincidentally with the geostrophic adjustment process. Since Ekman layers are
generally very thin compared with horizontal scales of motion, it is customary to
analyse their vertical structure by neglecting horizontal variations. Equations for such
flow on a slope have been described by Nagata et al. (1993), and if α is small and the
flow is assumed to be steady, they are effectively given by adding νu

zz
terms to the right-

hand side of (18). The behaviour is qualitatively similar to that of the Ekman layer that
results from wind stress on the surface of the oceans, and this analogy is helpful in
interpreting the behaviour. With the boundary conditions that u

"
, �

"
vanish at z¯ 0,

and that u and u
z
are continuous at z¯ d

"
, the local boundary layer solution is

u
"
­i�

"
¯ i�

i
[1®e−("−i)z/dν®e−("−i)d/dν sinh((1®i)z}dν)], 0! z! d

"
, (24)

in complex notation, where �
i
denotes the inviscid velocity given by (22), and dν is the

Ekman layer thickness given by (8). From this we may obtain the downslope volume
flux Q

E
, which is

Q
E

¯ $

%
�
i
dν91­3 e−#d"/dν sin 02d

"

dν

­
π

41®%

$
e−d"/dν sin 0d"

dν

­
π

41: . (25)

This increases approximately linearly from 0 to 3�
i
dν}4 as d

"
}dν increases from 0 to 3,

and then remains approximately unchanged as d
"
}dν increases further (see Nagata et

al., figure 13). This drainage flux is depicted schematically in figure 14(a). When (25)
is applied to the initial flow (with uniform �

i
), it implies that all of the drainage flow

emanates from the upslope side of the current, with no divergence in the middle.
However, for the geostrophically adjusted current (22) the net drainage is larger, and
it is mostly fed by divergence of Q

E
, causing downward motion in the current. This

Ekman suction velocity w
E

is given by

w
E

¯®
dQ

E

dx
E

3dν g«
4 r f r

d
"xx

, (26)

which is negative (downward) in the current and largest at the highest and lowest
points (with cosh (x}λ) dependence), and with a magnitude of O(νf )"/#. Application of
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(26) as a lower boundary condition to the inviscid two-layer equations shows that it
reduces the thickness of the lower layer, but more strongly at the sides than in the
middle. This tends to promote doming in the centre. There is also significant additional
drainage from the upslope side of the current (since, as discussed, there is no
replenishment from higher up the slope), which depletes the thickness there and further
sharpens up the boundary of the dense fluid.

(iii) Capture. An essential ingredient in the process is the effect of the collapse (or
reduction in thickness due to geostrophic adjustment and Ekman drainage) of the
lower layer on the upper-layer fluid. For this to be effective, the upper-layer fluid must
be situated above the collapsing layer for a sufficiently long period, and we then say
that the upper-layer is ‘captured’. If the flow is varying with time, so that the collapse
occurs at a fixed location, the upper-layer fluid is captured if it is stationary. If the
lower-layer flow is steady and its thickness decreases along the streamlines, the upper-
layer fluid is captured if it follow the same path. Fluid in a Taylor column over an
obstacle, for example, is captured in the same way.

(iv) Collapse and �ortex stretching. When the lower layer collapses by sinking into
the Ekman layer, its potential vorticity is not conserved. However, captured upper-
layer fluid does conserve its potential vorticity in this process, in the form

f­�
#x

d
#

¯
f

D®d
!

. (27)

Since d
"
­d

#
ED, as d

"
decreases d

#
must increase, and the upper-layer vorticity

becomes cyclonic, from (27) (see figure 14b). The small perturbation of the free surface
is then given by

�
#x

E f 9 d
#

D®d
!

®1:¯ g

f #
(d

"
­d

#
)
xx

, (28)

and from (18) the lower-layer velocity satisfies

�
"
¯ �

#
­

g«
r f r

d
#x

. (29)

Hence the stretching of the upper layer causes a net cyclonic barotropic motion, and
the maximum value attainable depends on the initial fractional depth of the upper
layer. This cyclonic barotropic velocity reduces the initial anticyclonic velocity (due to
geostrophic adjustment) in the lower layer and this in turn causes a net decrease in the
Ekman drainage flow. In the experiments where the dense fluid is released over a sill,
it undergoes some net downslope displacement. This also contributes to vortex
stretching of the upper layer if the latter is captured. However, this does not occur in
experiments with the horizontally released fluid.

(v) Eddy formation and propagation. The above discussion and accompanying
equations have been two-dimensional, with variation in the y-direction suppressed.
The processes of capture, collapse and vortex stretching will generally be three-
dimensional in practice, but the two-dimensional concepts are readily generalized, and
axisymmetric equations have the same form. Vortex stretching in the upper layer will
clearly tend to cause a closed vortical circulation there, and this effect will be
transmitted to the lower layer by the pressure. The net result will be a baroclinic eddy
but with a large barotropic component, cyclonic in the upper layer and relatively
anticyclonic in the lower, with a domed interface and much reduced Ekman drainage
(shown schematically in figure 14c). These eddies are observed to propagate along the
slope at a variety of speeds (see figure 8). There does not appear to be a complete theory
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for eddies of this type, but there are two dynamical processes that support this
propagation. First, geostrophic balance with gravity acting on the blob of dense lower-
layer fluid in the eddy gives the speed g«α}r f r. This effect is independent of the size of
the blob, but should be reduced when the depth of the blob is reduced to the order of
the Ekman layer thickness. Secondly, the flow induced by the barotropic component
of the eddy itself causes a secondary dipole of barotropic perturbation vorticity (the β-
gyres), which causes the vortex to move in the direction of the dipole axis (McWilliams
& Flierl 1979; Reznik & Dewar 1994). This speed is also of order g«α}r f r, and is
primarily alongslope with a small upslope component. Baroclinic components of the
vortex produce further complications that have a smaller affect on the speed, but affect
the vortex structure in the long term (Reznik, Grimshaw & Sriskandarajah 1996). The
resulting eddy speed is the sum of these effects. This is generally consistent with the
observed speeds, except that the latter are less than g«α}r f r if damping is sufficiently
rapid. Eddies from fluid released alongslope are observed to have a clear upslope
component. This eddy propagation removes a substantial body of fluid from the
vicinity of the source in the experiments, and enables the eddy generation process to
be repeated. The whole process is summarized in figure 14.

Comparison between the above dynamical scenario and the quantitative obser-
vations shown in figure 9 and 11 is not straightforward, because of the various
processes involved and their different time scales, but some correspondence may be
found. Geostrophic adjustment occurs in the time scale of a rotation period. If the
collapse during this adjustment is large enough to initiate an eddy, then this will be the
generation time, and this limit is reflected in figure 9. If the collapse and spin-up is
primarily due to uniform Ekman drainage, the time-scale for spin-up of the upper layer
is (D®d

!
)}(νf )"/#, which gives dependence on D and f that is consistent with figure

9. This behaviour is also consistent with the variation of eddy strength shown in figure
11. Ekman drainage from the upslope side of the eddy gives a third time scale, and a
fourth comes from the eddy propagation speed O(g«α} f ), since the eddy must move at
least a diameter before the generation process can be repeated. In practice, of course,
these processes and their operating times overlap. It is interesting that viscous drainage
can promote eddy generation and propagation by vortex stretching, but also inhibit
propagation by removing dense lower-layer fluid.

5.2. Application to oceanographic flows

A similar process has recently been identified in a numerical study by Spall & Price
(1997), of an idealization of the Denmark Strait overflow, which contains two
downslope co-flowing layers. Here, flow of the lower layer causes stretching of the
upper layer, and rapid barotropic vortex formation in both, although the forcing
conditions are effectively steady. Cyclonic eddies have been observed over the
Denmark Strait overflow (e.g. Bruce 1995; Krauss 1996).

The initial motivation for this work was the flow of dense water on slopes in the
ocean and so it is useful to see how our work relates to such flows. In order to compare
the laboratory flows with oceanographic flows it is necessary to replace the molecular
viscosity of the laboratory flows with a vertical eddy viscosity for the oceanographic
flows. We do this by matching the stress in a simple viscous boundary layer with the
stress estimated by a quadratic drag law,

τ¯A
Z
c
N
}d

A
¯kU#, (30)

where A
Z

is the vertical eddy viscosity, d
A

the boundary layer thickness based on this
(d

A
¯ (2A

Z
}f )"/#), U is the velocity scale from the scalings in §3 and k is taken to be
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2.5¬10−$ (a typical value for oceanographic flows, e.g. Lane-Serff 1993, 1995;
Bombosch & Jenkins 1995). Equation (30) can be rearranged to give A

Z
in terms of

known quantities,
A

Z
¯ (2k#U %)}( fc#

N
)¯ (4k#Qf #)}(g«α#). (31)

Thus a flow with a volume flux of Q¯ 5¬10' m$ s−" (5 Sverdrup) and density
difference of 0.05%, flowing onto a slope of α¯ 0.02 at a depth of D¯ 1000 m gives
(assuming f¯ 10−% s−"),

A
Z
¯ 0.64 m# s−", L¯ 15 km, Y¯ 45 km, Y}L¯ 3.0, c

N
¯ 0.98 m s−", Γ¯ 0.3.

From our results we predict that such a flow would produce eddies with a frequency
of one every (4π}f ) (0.10}Γ­2.4)¯ 106 hours, a radius of 1.25L¯ 18.8 km, and the
eddies would propagate along the slope a distance 2.3L¯ 34.5 km out from the source
(where the water is 1690 m deep) at a speed of 0.1 (Y}L)!.'# c

N
¯ 0.19 m s−". While the

eddies propagate along the slope there would be a viscous layer draining fluid at an
angle down the slope in a layer of thickness scaling with d

A
¯ 113 m.

6. Summary

We have shown that a dense current on a slope can generate eddies in the fluid above
the current. The eddies are cyclonic and the data shown in figure 9–11 imply that they
are generated by vortex stretching in the upper layer, as discussed above. The eddies
occur provided that viscous draining is not dominant (Y}L" 3.5). The frequency of
the eddies depends on Γ, reaching approximately one eddy every two revolutions for
Γ larger than 0.3, with the frequency decreasing for smaller Γ. For sufficiently weak
stretching (Γ! 0.07 for our experiments) no eddies could be observed at all. However,
this appears to be a feature of our particular experiments, in that they were not of
sufficiently long duration for eddies of such low frequencies to be observed. Low
frequencies at lower values of Γ have been observed by Smith (1977). The strength of
the eddies also depends on Γ, with the eddy vorticity reaching 2f for Γ¯ 0.5. The
eddies move along the slope, with a speed that depends on viscous draining effects and
generally scales on c

N
(at least for moderate values of Y}L). In contrast, for weak

viscous draining (large Y}L), the eddy speed appears to be related to the speed of a
rotating current flowing on a horizontal surface, which scales on u. However, it is
difficult to separate the effects of a relatively small topographic slope (small s) from
weak viscous draining.

Our results can be applied to oceanographic flows, provided the molecular viscosity
appropriate in the laboratory flows is replaced by a vertical turbulent eddy viscosity in
the oceanographic flow. The simple eddy viscosity method probably overestimates the
draining flux but all the input fluid will eventually drain downslope in the viscous flow
in any case. It is the behaviour of the viscous layer that determines where the dense flow
will leave the slope and flow into the main body of the ocean, and this viscous
behaviour is under study. However, the eddy formation discussed in this paper clearly
has an influence on the viscous flow as well as a dramatic effect on the flow in the fluid
above the dense current.

In many oceanographic situations the stratification of the ambient fluid is significant,
and its effects need to be included in order to make detailed comparisons between the
oceanographic and laboratory flows. In a sequel to this work we will show how
stratification can effectively put a ‘ lid ’ on the flow, reducing the effective depth of the
overlying fluid (i.e. making D smaller) and thus enhancing vortex stretching and eddy
formation.
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